
Master Thesis
Proposals

June 2021

People
VLSI LAB

Outline
• Logic In Memory

• T.LiM.1 : Architectural Explorations with Dexima CAD
• T.LiM.2 : FPGA LiM Implementation
• T.LiM.3 : LiM Toolchain
• T.LiM.4 : Octantis
• T.LiM.5 : Octantis & The LiM Toolchain

• Quantum Computing
• T.QC.1 : Emulation of Quantum Annealing on GPU
• T.QC.2 : Emulation of Quantum Gate Array On FPGAs
• T.QC.3 : Emulation of Quantum Gate Array On GPUs
• T.QC.4 : Compilation of Quantum Circuits
• T.QC.5 : Quantum High Level Synthesis

• CAD Tools
• T.CAD.1 Hybrid CMOS Simulation
• T.CAD.2 ToPoliNano Simulator

• Field Coupled Technologies
• TMAG.1 Racetrack memory architecture

Logic-In-Memory

The memory bottleneck problem

What is Logic-in-Memory?

LiM Architectures

LiM
Cell ...

Intra-Row Logic

LiM
Cell

LiM
Cell

LiM
Cell ...

Intra-Row Logic

LiM
Cell

LiM
Cell

LiM Array

- Parallel computing capabilities to

enhance performance

- In memory computing features, to

minimize power consumption due

to data movement and to increase

performance

- Modularity to adapt processing

capabilities depending on the

application

- Flexibility to support for a wide

range of data processing related

operations

LiM Design Environment

❖ To design and test LiM
architectures an entire
Software Toolchain has been
created

❖ Several components are part of it:
➢ Manual Design CAD (Dexima CAD)
➢ High-Level Synthesizer, from C to a LiM architecture

(Octantis)
➢ LiM Simulator (Dexima Simulator)
➢ Technology dependent Libraries of LiM cells

T.LiM.1 : Architectural Explorations
with Dexima CADSKILLS:

● Advanced knowledge
on Cadence, Synopsys
and Mentor suites

● Digital design flow
● VHDL & SystemVerilog
● UVM verification,

Gem5
● Python programming

T.LiM.1 : Architectural Explorations
with Dexima CAD

What advantages can be obtained with a LiM architecture
with respect to a classical CPU-Memory one?

- Realize different LiM structures at the architectural
level with Dexima CAD

- Test their functionality with an embedded UVM
testbench

- Improve Dexima CAD with new functionalities
- Estimate the performance of a LiM architecture with

both DExIMA backend and Synopsys/Cadence
- Compare the results with a classical von Neumann

architecture with Gem5

T.LiM.2 : FPGA LiM Implementation
SKILLS:

● FPGA and uController
programming

● Scripting
● VHDL
● Knowledge on laboratory

instruments (Oscilloscope,
Multimeter,...)

Evaluate the performance of a LiM
architecture on a real board!

- VirtLab 1.0 from Politecnico di
Torino, with 2 Cyclone 10 and 2
STM32L496 microcontrollers

T.LiM.2 : FPGA LiM Implementation

Estimate the impact of the LiM paradigm on a real
evaluation board.

- Realize different LiM structures at the architectural
level. As a starting point, you will use the already
existing LiM architectures developed by VLSI Lab.

- Test their functionality and download the code on the
FPGA.

- Estimate the performance of a LiM architecture by
performing measurements on the circuits.

T.LiM.3 : LiM Toolchain

Realization of a
LiM cell library.

Precise
performance
estimations of
LiM structures!

Library will be
used in standard
tools and DExIMA.

SKILLS:
● Advanced knowledge

on Cadence, Synopsys
and Mentor suites

● Scripting
● Digital design flow

T.LiM.3 : LiM Toolchain
Realize a CMOS-Based library for LiM architectures, using
the standard Digital Design flow

- Realize different LiM cells at the architectural level and
test their functionality.

- Design the LiM cell at transistor-level and simulate it
with Cadence Virtuoso

- Layout of the LiM cell with parasitic extractions
- Create a Liberty file of the LiM Cells for synthesis with

Synopsys
- Performance estimations with Synopsys/Cadence

❖ With the aim of making
the program grow, add
synthesis compatibility to
new LiM architectures

❖ Test and prototype the
accelerator derived from
your work on the VirtLab
1.0 board

SKILLS:
● C++ programming
● HW design and

testing
● FPGA prototyping➔ Starting from an input C code, Octantis

rearranges it for a direct implementation inside
a Hybrid System provided by a CPU and a LiM
Unit. In particular, an optimal LiM Unit is fully
synthesized by the program.

T.LiM.4 : Octantis

Interdisciplinary project
(SW and HW)

❖ Expanding the actual
Exploration Capabilities of
the tool and promoting the
integration within the whole
LiM Toolchain

❖ Add new modules for
improving the collaboration
among the tools

❖ The mixed design process will
be tested through advanced
verification procedures

SKILLS:
● C++ programming
● Python

programming
● HW design and

testing
● UVM verification

➔ Starting from an input C code, Octantis
rearranges it for a direct implementation inside
a Hybrid System provided by a CPU and a LiM
Unit. In particular, an optimal LiM Unit is fully
synthesized by the program.

T.LiM.5 : Octantis & The LiM
Toolchain

Quantum Computing

Where are we?

Analogies with classical computing

Quantum computing and classical computing
share the concepts of:
• Algorithm as a sequence of transformations
• State of a register

• Bit
• Qbit

• Quantum computing uses a different
computational paradigm from classical one:
operations can be slower/faster in either
model.

• At the end of the computation, some
information on the state of the quantum
register is obtained by means of a special
measurement operation.

Some Algorithms

Two most notable algorithms:
• Shor’s algorithm for integer factorization in

polynomial time used for cryptographic purposes
[Shor, 1997]

• Grover’s algorithm for black-box search in O(√n)
time [Grover, 1996].

• Simulation of complex systems like molecules,
economy...

Even if a classical computer can simulate a universal
quantum computer, it may not be efficient: some tasks
may be exponentially faster in one model of computation
versus the other.

Quantum Computing

Quantum Computing is a discipline of
Information Theory related to the
definition of computational routines
based on a unit of information, named
qubit, encoded onto a quantum physical
quantity.

Every computation has three elements:

• Data = qubits
• Operations = quantum gates

(unitary transformations)
• Results = measurements

The qubit

• A classical bit can take two different values (0 or 1).
• It is discrete.
• A qubit can “take” infinitely many different values.
• Qubits live in a Hilbert vector space with a basis of two

elements that we denote |0⟩ and |1⟩.
• A generic qubit is in a superposition

 |ψ⟩ = α |0⟩ + β |1⟩

How can we implement a qubit?

Quantum Computational
Advantage

• Superposition permits to simultaneously evaluate
multiple data

• Entanglement can assist in fast converging to the
problem's solution.

They both permit to define, for some hard problems,
algorithms with computational costs lower than the
best corresponding classical ones.

Practical Quantum Circuit strategies
• Oracular: circuits thought for labeling a solution and

amplifying the probability of measuring it (e.g. Grover’s search)
• Variational: parameterized circuits exploring the whole

solutions space, whose quantum gates angles are iteratively
updated by a classical optimizer according to a cost function.

Chen et al., Variational Quantum Circuits for Deep Reinforcement
Learning, arXiv:1907.00397

https://qiskit.org/textbook/ch-algorithms/grover.html

https://arxiv.org/pdf/1907.00397.pdf
https://qiskit.org/textbook/ch-algorithms/grover.html

Quantum Annealing
• Specific-purpose Quantum Computing for solving Quadratic

Unconstrained Binary Optimization (QUBO) problems, whose
cost functions are mapped onto spin Hamiltonians.

• A quantum annealer exploits tunneling for achieving the lowest
energy spin configuration, corresponding to the optimal
solution.

• Quantum annealers are employed for solving routing or logistic
problems (e.g. traffic flow), in materials engineering (e.g.
magnetic properties) and in Machine Learning.

https://www.dwavesys.com/media-coverage/techrepu
blic-d-wave-announces-5000-qubit-fifth-generation-qua
ntum-annealer

https://www.dwavesys.com/sites/default/files/VW.pdf
https://www.dwavesys.com/press-releases/d-wave-demonstrates-performance-advantage-quantum-simulation-exotic-magnetism
https://docs.dwavesys.com/docs/latest/doc_ml.html
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer

Programming languages

Different frameworks and programming
languages:

• qasm

• Qiskit (IBM)

• Cirq (Google)

• Forest/pyqil (Rigetti)

• Q# (Microsoft)

• Ocean (D-Wave)

Limitations of current hardware
• Building a quantum computer is extremely challenging in

terms of:
• Fabrication costs
• Materials
• Temperatures (some mK for superconducting qubits, some K for

semiconductor qubits)
• Real qubits are always affected by non-ideality phenomena

as decoherence, which can affect the reliability of the results
of an algorithm on a given quantum computer.

https://www.ibm.com/blogs/research/2017
/11/the-future-is-quantum/

https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-com
puter-with-superconducting-circuit-4c30b1b296cd

https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting-circuit-4c30b1b296cd
https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting-circuit-4c30b1b296cd

Emulators of quantum hardware
• Quantum computers fabricated by some big companies (IBM,

Google, D-Wave, etc.) are already programmable via-cloud.
• Emulation of quantum computers on classical hardware (FPGA,

GPU, etc.) could be a good approach for having an on-premises
device behaving like an ideal quantum computer:
• No decoherence
• Full connectivity
• Maintenance costs lower than real quantum computers

https://www.fujitsu.com/emeia/services/business-services/digital-annea
ler/what-is-digital-annealer/

Pilch, J., Długopolski, J. An FPGA-based real quantum
computer emulator. J Comput Electron 18, 329–342
(2019). https://doi.org/10.1007/s10825-018-1287-5

https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://doi.org/10.1007/s10825-018-1287-5

T.QC.1 : Emulation of Quantum
Annealing on GPU

Operating steps:

• Analysis of the state of the art algorithms
• Definition of potential improvements
• Software development:

• GPU emulation
• Interfaces with frameworks for QUBO/QUSO formulation

• Scheduling or Machine Learning use cases

SKILLS:
● Quantum annealing
● C/C++ Programming
● GPU programming

Waidyasooriyaet al., A GPU-Based Quantum Annealing Simulator for Fully-Conncted Ising Models Utilizion
Spatial and Temporal Parallelism, IEEE Access, 2020

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9057502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9057502

T.QC.2 : Emulation of Quantum Gate
Array On FPGAs

Feasibility study:

➢ Advantages & Disadvantages of Emulation of Variational
Quantum Algorithms on Hybrid Computational Systems,
composed by a uC and a FPGA accelerator.

SKILLS:
● Quantum computing
● FPGA Design
● uC programming

Operating steps:

● Analysis of the state of the
art

● Formulation of an effective
VQA model for Machine
Learning

● Implementation of the
algorithm on a FPGA Peruzzo, A., McClean, J., Shadbolt, P. et al. A variational

eigenvalue solver on a photonic quantum processor. Nat
Commun 5, 4213 (2014). https://doi.org/10.1038/ncomms5213

https://doi.org/10.1038/ncomms5213

T.QC.3 : Emulation of Quantum Gate
Array On GPUs

Feasibility study:

➢ Advantages & Disadvantages of Emulation of Variational
Quantum Algorithms on Hybrid Computational Systems,
composed by a CPU and a GPU.

SKILLS:
● Quantum computing
● C/C++ programming
● GPU Programming

Operating steps:

● Analysis of the state of the
art

● Formulation of an effective
VQA model for Image
Processing

● Implementation of the
algorithm on a GPU

Heng et al., Exploiting GPU-based Parallelism for Quantum Computer
Simulation: A Survey, IEIE Transactions on Smart Processing &
Computing, Vol.9 No.62020.12468 - 476

https://www.researchgate.net/publication/347910231_Exploiting_GPU-based_Parallelism_for_Quantum_Computer_Simulation_A_Survey
https://www.researchgate.net/publication/347910231_Exploiting_GPU-based_Parallelism_for_Quantum_Computer_Simulation_A_Survey

Quantum Circuit Design
• Real quantum computers have:

• Specific native gates
• Potential different decoherence times between qubits
• Limited qubits connectivity

• Since quantum hardware shows a limited number of non-ideal qubits,
the quantum circuit to be executed on a given backend must be
critically chosen.

• In order to define a quantum circuit suitable for solving a given
problem, simulators/emulators of ideal qubits can be employed
without having access to real hardware.

L.Raggi, Arithmetic circuits for quantum
computing: a software library, Oct. 2020.

https://www.ibm.com/blogs/research/2
019/09/quantum-computation-center/

https://webthesis.biblio.polito.it/15853/1/tesi.pdf
https://webthesis.biblio.polito.it/15853/1/tesi.pdf
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/

T.QC.4 : Compilation of Quantum
Circuits

A quantum compiler (substantially a quantum circuit
synthesizer) could enhance the reliability of the
circuit to be executed on a real quantum hardware.

SKILLS:
● Quantum computing
● C/C++ programming
● Python programming

https://www.ibm.com/blogs/research/2019/
11/qiskit-for-multiple-architectures/https://qiskit.org/documentation/apidoc/transpiler.html

Operating steps:

• Study of compilation strategies in the state of the art, with a particular
focus on routing.

• Analysis of a compilation toolchain under development in a thesis ending
in July.

• Enhancement of the current compilation toolchain.
• Benchmarking and comparison with other compilers

https://arxiv.org/pdf/2012.09680.pdf
https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/
https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.1109/TQE.2021.3068355
https://youtu.be/Z9R9a3hku9Y

T.QC.5 : Quantum High Level
Synthesis

A challenging task of contemporary Quantum
Information is defining a general methodology for
automatic construction of quantum circuits from
algorithms described classically.

SKILLS:
● Quantum algorithms
● C/C++ programming
● Python programming
● Synthesis Tools

Operating steps:

• Understanding the main Quantum Computing routines (oracular,
variational, etc.).

• Analysis of the circuit and compilation libraries under development at VLSI
Lab.

• Analysis of High Level Synthesis strategies in Classical Computing.
• Definition of strategies for automatic generation of quantum circuits,

according to a problem defined in a high-level language.
• Testing with practical use cases.

CAD Tools for new emerging
technology-based paradigms

Why?

A change in the technology may imply a deep change in the
development of the design tools. Terms of comparison with CMOS
technology are needed.

• Physical simulators can perform very accurate simulations but
they are extremely expensive in terms of computational costs.
Indeed, it is not possible to use them to analyze large and
complex circuits

• High level simulators (like Modelsim) can be used to model the
logic behavior of new technology but with this approach the
design of large architectures is not manageable.

ToPoliNano Framework

A multi-platform CAD software for emerging
nanotechnologies.

Download: https://topolinano.polito.it/

ToPoliNano Framework

ToPoliNano

ToPoliNano Framework

MagCAD

ToPoliNano Framework

❖ Expanding the current Tool
Capabilities of the tool
enabling the possibility to
simulate hybrid
CMOS-Emerging technology
circuits

❖ Add domain translation
modules to interface
technologies operating on
different domains

❖ Automate the design flow

SKILLS:
● C++ programming
● Existing CAD tool

tool usage
● HDL design

➔ Starting from a structural HDL description
ToPoliNano can perform physical design and
simulation of circuits based on emerging
technologies

T.CAD.1 : Hybrid Simulation

❖ Study models of emerging
technologies (e.g. pNML,
Skyrmion, spinwaves, etc…)

❖ Extend the integrated
simulators within
ToPoliNano to enable the
simulation of new
technologies (e.g. adding the
concept of motion)

❖ Validate the simulator with
physical simulator data

➔ Hybrid simulation requires models of the
technologies and ad-hoc simulators

T.CAD.2 : ToPoliNano Simulator
SKILLS:

● C++ programming
● Scripting
● Technology

modeling

Field Coupled Technologies

Racetrack Memory

Racetrack Memory

NOR

NAND

T.MAG.1 : Racetrack Memory
Architecture

❖ Develop a high level
memory model with
standard memory interface

❖ Perform analysis to identify
the best memory
organization (size, etc…)

❖ Implement highly parallel
algorithm and compare
performance with custom
memories

➔ Racetrack is an extremely dense

Memory with computing
capabilities

SKILLS:
● knowledge on

Synopsys and
Mentor suites

● Scripting
● Digital design

flow

Questions?

Stay tuned on
www.vlsilab.polito.it

The theses presented here are ready now and
available in the next few months. However

other related or prosecutions will be available
later.

http://www.vlsilab.polito.it

