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Logic-In-Memory



The memory bottleneck problem



What is Logic-in-Memory?



LiM Architectures
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- Parallel computing capabilities to 

enhance performance

- In memory computing features, to 

minimize power consumption due 

to data movement and to increase 

performance

- Modularity to adapt processing 

capabilities depending on the 

application

- Flexibility to support for a wide 

range of data processing related 

operations



LiM Design Environment

❖ To design and test LiM 
architectures an entire 
Software Toolchain has been 
created

❖ Several components are part of it:
➢ Manual Design CAD (Dexima CAD)
➢ High-Level Synthesizer, from C to a LiM architecture 

(Octantis)
➢ LiM Simulator (Dexima Simulator)
➢ Technology dependent Libraries of LiM cells



T.LiM.1 : Architectural Explorations  
with Dexima CADSKILLS:

● Advanced knowledge 
on Cadence, Synopsys 
and Mentor suites

● Digital design flow
● VHDL & SystemVerilog
● UVM verification, 

Gem5
● Python programming



T.LiM.1 : Architectural Explorations  
with Dexima CAD

What advantages can be obtained with a LiM architecture 
with respect to a classical CPU-Memory one?

- Realize different LiM structures at the architectural 
level with Dexima CAD

- Test their functionality with an embedded UVM 
testbench

- Improve Dexima CAD with new functionalities
- Estimate the performance of a LiM architecture with 

both DExIMA backend and Synopsys/Cadence
- Compare the results with a classical von Neumann 

architecture with Gem5 



T.LiM.2 : FPGA LiM Implementation
SKILLS:

● FPGA and uController 
programming

● Scripting
● VHDL
● Knowledge on laboratory 

instruments (Oscilloscope, 
Multimeter,...)

Evaluate the performance of a LiM 
architecture on a real board! 

- VirtLab 1.0 from Politecnico di 
Torino, with 2 Cyclone 10 and 2 
STM32L496 microcontrollers



T.LiM.2 : FPGA LiM Implementation

Estimate the impact of the LiM paradigm on a real 
evaluation board.

- Realize different LiM structures at the architectural 
level. As a starting point, you will use the already 
existing LiM architectures developed by VLSI Lab.

- Test their functionality and download the code on the 
FPGA.

- Estimate the performance of a LiM architecture by 
performing measurements on the circuits. 



T.LiM.3 : LiM Toolchain

Realization of a 
LiM cell library.

Precise 
performance 
estimations of 
LiM structures! 

Library will be 
used in standard 
tools and DExIMA.

SKILLS:
● Advanced knowledge 

on Cadence, Synopsys 
and Mentor suites

● Scripting
● Digital design flow



T.LiM.3 : LiM Toolchain
Realize a CMOS-Based library for LiM architectures, using 
the standard Digital Design flow

- Realize different LiM cells at the architectural level and 
test their functionality. 

- Design the LiM cell at transistor-level and simulate it 
with Cadence Virtuoso

- Layout of the LiM cell with parasitic extractions
- Create a Liberty file of the LiM Cells for synthesis with 

Synopsys
- Performance estimations with Synopsys/Cadence 



❖ With the aim of making 
the program grow, add 
synthesis compatibility to 
new LiM architectures

❖ Test and prototype the 
accelerator derived from 
your work on the VirtLab 
1.0  board

SKILLS:
● C++ programming
● HW design and 

testing
● FPGA prototyping➔ Starting from an input C code, Octantis 

rearranges it for a direct implementation inside 
a Hybrid System provided by a CPU and a LiM 
Unit. In particular, an optimal LiM Unit is fully 
synthesized by the program.

T.LiM.4 : Octantis

Interdisciplinary project 
(SW and HW)



❖ Expanding the actual 
Exploration Capabilities of 
the tool and promoting the 
integration within the whole 
LiM Toolchain

❖ Add new modules for 
improving the collaboration 
among the tools

❖ The mixed design process will 
be tested through advanced 
verification procedures

SKILLS:
● C++ programming
● Python 

programming
● HW design and 

testing
● UVM verification

➔ Starting from an input C code, Octantis 
rearranges it for a direct implementation inside 
a Hybrid System provided by a CPU and a LiM 
Unit. In particular, an optimal LiM Unit is fully 
synthesized by the program.

T.LiM.5 : Octantis & The LiM 
Toolchain



Quantum Computing



Where are we?



Analogies with classical computing

Quantum computing and classical computing 
share the concepts of:
• Algorithm as a sequence of transformations
• State of a register

• Bit
• Qbit

• Quantum computing uses a different 
computational paradigm from classical one: 
operations can be slower/faster in either 
model. 

• At the end of the computation, some 
information on the state of the quantum 
register is obtained by means of a special 
measurement operation.



Some Algorithms

Two most notable algorithms: 
• Shor’s algorithm for integer factorization in 

polynomial time used for cryptographic purposes 
[Shor, 1997]

• Grover’s algorithm for black-box search in O(√n) 
time [Grover, 1996].

• Simulation of complex systems like molecules, 
economy...

Even if a classical computer can simulate a universal 
quantum computer, it may not be efficient: some tasks 
may be exponentially faster in one model of computation 
versus the other.



Quantum Computing

Quantum Computing is a discipline of 
Information Theory related to the 
definition of computational routines 
based on a unit of information, named 
qubit, encoded onto a quantum physical 
quantity.

Every computation has three elements: 

• Data = qubits
• Operations = quantum gates 

(unitary transformations)
• Results = measurements



The qubit

• A classical bit can take two different values (0 or 1). 
• It is discrete.
• A qubit can “take” infinitely many different values. 
• Qubits live in a Hilbert vector space with a basis of two 

elements that we denote |0⟩ and |1⟩.
• A generic qubit is in a superposition

   |ψ⟩ = α |0⟩ + β |1⟩ 
 



How can we implement a qubit?



Quantum Computational 
Advantage

• Superposition permits to simultaneously evaluate 
multiple data

• Entanglement can assist in fast converging to the 
problem's solution.

They both permit to define, for some hard problems, 
algorithms with computational costs lower than the 
best corresponding classical ones.



Practical Quantum Circuit strategies
• Oracular: circuits thought for labeling a solution and 

amplifying the probability of measuring it (e.g. Grover’s search)
• Variational: parameterized circuits exploring the whole 

solutions space, whose quantum gates angles are iteratively 
updated by a classical optimizer according to a cost function.

Chen et al., Variational Quantum Circuits for Deep Reinforcement 
Learning, arXiv:1907.00397

https://qiskit.org/textbook/ch-algorithms/grover.html

https://arxiv.org/pdf/1907.00397.pdf
https://qiskit.org/textbook/ch-algorithms/grover.html


Quantum Annealing
• Specific-purpose Quantum Computing for solving Quadratic 

Unconstrained Binary Optimization (QUBO) problems, whose 
cost functions are mapped onto spin Hamiltonians.

• A quantum annealer exploits tunneling for achieving the lowest 
energy spin configuration, corresponding to the optimal 
solution.

• Quantum annealers are employed for solving routing or logistic 
problems (e.g. traffic flow), in materials engineering (e.g. 
magnetic properties) and in Machine Learning.

https://www.dwavesys.com/media-coverage/techrepu
blic-d-wave-announces-5000-qubit-fifth-generation-qua
ntum-annealer

https://www.dwavesys.com/sites/default/files/VW.pdf
https://www.dwavesys.com/press-releases/d-wave-demonstrates-performance-advantage-quantum-simulation-exotic-magnetism
https://docs.dwavesys.com/docs/latest/doc_ml.html
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer
https://www.dwavesys.com/media-coverage/techrepublic-d-wave-announces-5000-qubit-fifth-generation-quantum-annealer


Programming languages

Different frameworks and programming 
languages: 

• qasm

• Qiskit (IBM)

• Cirq (Google)

• Forest/pyqil (Rigetti) 

• Q# (Microsoft)

• Ocean (D-Wave)



Limitations of current hardware
• Building a quantum computer is extremely challenging in 

terms of:
• Fabrication costs
• Materials
• Temperatures (some mK for superconducting qubits, some K for 

semiconductor qubits)
• Real qubits are always affected by non-ideality phenomena 

as decoherence, which can affect the reliability of the results 
of an algorithm on a given quantum computer.

https://www.ibm.com/blogs/research/2017
/11/the-future-is-quantum/

https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-com
puter-with-superconducting-circuit-4c30b1b296cd

https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting-circuit-4c30b1b296cd
https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting-circuit-4c30b1b296cd


Emulators of quantum hardware
• Quantum computers fabricated by some big companies (IBM, 

Google, D-Wave, etc.) are already programmable via-cloud.
• Emulation of quantum computers on classical hardware (FPGA, 

GPU, etc.) could be a good approach for having an on-premises 
device behaving like an ideal quantum computer:
• No decoherence
• Full connectivity
• Maintenance costs lower than real quantum computers

https://www.fujitsu.com/emeia/services/business-services/digital-annea
ler/what-is-digital-annealer/

Pilch, J., Długopolski, J. An FPGA-based real quantum 
computer emulator. J Comput Electron 18, 329–342 
(2019). https://doi.org/10.1007/s10825-018-1287-5

https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://doi.org/10.1007/s10825-018-1287-5


T.QC.1 : Emulation of Quantum 
Annealing on GPU

Operating steps:

• Analysis of the state of the art algorithms
• Definition of potential improvements
• Software development:

• GPU emulation
• Interfaces with frameworks for QUBO/QUSO formulation

• Scheduling or Machine Learning use cases

SKILLS:
● Quantum annealing
● C/C++ Programming
● GPU programming

Waidyasooriyaet al., A GPU-Based Quantum Annealing Simulator for Fully-Conncted Ising Models Utilizion 
Spatial and Temporal Parallelism, IEEE Access, 2020

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9057502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9057502


T.QC.2 : Emulation of Quantum Gate
Array On FPGAs

Feasibility study:

➢ Advantages & Disadvantages of Emulation of Variational 
Quantum Algorithms on Hybrid Computational Systems, 
composed by a uC and a FPGA accelerator.

SKILLS:
● Quantum computing
● FPGA Design
● uC programming

Operating steps:

● Analysis of the state of the 
art

● Formulation of an effective 
VQA model for Machine 
Learning

● Implementation of the 
algorithm on a FPGA Peruzzo, A., McClean, J., Shadbolt, P. et al. A variational 

eigenvalue solver on a photonic quantum processor. Nat 
Commun 5, 4213 (2014). https://doi.org/10.1038/ncomms5213

https://doi.org/10.1038/ncomms5213


T.QC.3 : Emulation of Quantum Gate 
Array On GPUs

Feasibility study:

➢ Advantages & Disadvantages of Emulation of Variational 
Quantum Algorithms on Hybrid Computational Systems, 
composed by a CPU and a GPU.

SKILLS:
● Quantum computing
● C/C++ programming
● GPU Programming

Operating steps:

● Analysis of the state of the 
art

● Formulation of an effective 
VQA model for Image 
Processing

● Implementation of the 
algorithm on a GPU

Heng et al., Exploiting GPU-based Parallelism for Quantum Computer 
Simulation: A Survey, IEIE Transactions on Smart Processing & 
Computing, Vol.9 No.62020.12468 - 476

https://www.researchgate.net/publication/347910231_Exploiting_GPU-based_Parallelism_for_Quantum_Computer_Simulation_A_Survey
https://www.researchgate.net/publication/347910231_Exploiting_GPU-based_Parallelism_for_Quantum_Computer_Simulation_A_Survey


Quantum Circuit Design
• Real quantum computers have:

• Specific native gates
• Potential different decoherence times between qubits
• Limited qubits connectivity

• Since quantum hardware shows a limited number of non-ideal qubits, 
the quantum circuit to be executed on a given backend must be 
critically chosen.

• In order to define a quantum circuit suitable for solving a given 
problem, simulators/emulators of ideal qubits can be employed 
without having access to real hardware.

L.Raggi, Arithmetic circuits for quantum 
computing: a software library, Oct. 2020.

https://www.ibm.com/blogs/research/2
019/09/quantum-computation-center/

https://webthesis.biblio.polito.it/15853/1/tesi.pdf
https://webthesis.biblio.polito.it/15853/1/tesi.pdf
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/


T.QC.4 : Compilation of Quantum 
Circuits

A quantum compiler (substantially a quantum circuit 
synthesizer) could enhance the reliability of the 
circuit to be executed on a real quantum hardware.

SKILLS:
● Quantum computing
● C/C++ programming
● Python programming

https://www.ibm.com/blogs/research/2019/
11/qiskit-for-multiple-architectures/https://qiskit.org/documentation/apidoc/transpiler.html

Operating steps:

• Study of compilation strategies in the state of the art, with a particular 
focus on routing.

• Analysis of a compilation toolchain under development in a thesis ending 
in July.

• Enhancement of the current compilation toolchain.
• Benchmarking and comparison with other compilers

https://arxiv.org/pdf/2012.09680.pdf
https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/
https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.1109/TQE.2021.3068355
https://youtu.be/Z9R9a3hku9Y


T.QC.5 : Quantum High Level 
Synthesis

A challenging task of contemporary Quantum 
Information is defining a general methodology for 
automatic construction of quantum circuits from 
algorithms described classically.

SKILLS:
● Quantum algorithms
● C/C++ programming
● Python programming
● Synthesis Tools

Operating steps:

• Understanding the main Quantum Computing routines (oracular, 
variational, etc.).

• Analysis of the circuit and compilation libraries under development at VLSI 
Lab.

• Analysis of High Level Synthesis strategies in Classical Computing.
• Definition of strategies for automatic generation of quantum circuits, 

according to a problem defined in a high-level language.
• Testing with practical use cases.



CAD Tools for new emerging 
technology-based paradigms



Why?

A change in the technology may imply a deep change in the 
development of the design tools. Terms of comparison with CMOS 
technology are needed.

• Physical simulators can perform very accurate simulations but 
they are extremely expensive in terms of computational costs. 
Indeed, it is not possible to use them to analyze large and 
complex circuits

• High level simulators (like Modelsim) can be used to model the 
logic behavior of new technology but with this approach the 
design of large architectures is not manageable.



ToPoliNano Framework

A multi-platform CAD software for emerging 
nanotechnologies.

Download: https://topolinano.polito.it/ 



ToPoliNano Framework

ToPoliNano



ToPoliNano Framework

MagCAD



ToPoliNano Framework



❖ Expanding the current Tool 
Capabilities of the tool 
enabling the possibility to 
simulate hybrid 
CMOS-Emerging technology 
circuits

❖ Add domain translation 
modules to interface 
technologies operating on 
different domains

❖ Automate the design flow 

SKILLS:
● C++ programming
● Existing CAD tool 

tool usage
● HDL design

➔ Starting from a structural HDL description 
ToPoliNano can perform physical design and 
simulation of circuits based on emerging 
technologies

T.CAD.1 : Hybrid Simulation



❖ Study models of emerging 
technologies (e.g. pNML, 
Skyrmion, spinwaves, etc…)

❖ Extend the integrated 
simulators within 
ToPoliNano to enable the 
simulation of new 
technologies (e.g. adding the 
concept of motion)

❖ Validate the simulator with 
physical simulator data

➔ Hybrid simulation requires models of the 
technologies and ad-hoc simulators

T.CAD.2 : ToPoliNano Simulator
SKILLS:

● C++ programming
● Scripting
● Technology 

modeling



Field Coupled Technologies



Racetrack Memory



Racetrack Memory

NOR

NAND



T.MAG.1 : Racetrack Memory 
Architecture

❖ Develop a high level 
memory model with 
standard memory interface

❖ Perform analysis to identify 
the best memory 
organization (size, etc…)

❖ Implement highly parallel 
algorithm and compare 
performance with custom 
memories

➔ Racetrack is an extremely dense

Memory with computing 
capabilities

SKILLS:
● knowledge on 

Synopsys and 
Mentor suites

● Scripting
● Digital design 

flow



Questions?

Stay tuned on 
www.vlsilab.polito.it

The theses presented here are ready now and 
available in the next few months. However 

other related or prosecutions will be available 
later.

http://www.vlsilab.polito.it

